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The generalised Brillouin theorem 

J Pian and C S Sharma 
Department of Mathematics, Birkbeck College, Malet Street, London WClE  7HX, UK 
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Abstract. By using the new calculus on complex Banach spaces developed by Sharma and 
Rebelo, we give a rigorous proof of the simplest and yet the most generalised version of the 
Brillouin theorem as given by Sharma and SriRankanathan. 

1. Introduction 

Sharma and SriRankanathan (1980) have used ordinary calculus to prove a very 
powerful generalisation of the Brillouin theorem. However, it is evident that this result 
is basically one in the calculus of variations, and the appropriate calculus to use for 
giving a properly rigorous proof of the result is the new calculus on complex Banach 
spaces introduced by Sharma and Rebelo (1975) and developed further by Fonte 
(1979) and Pian and Sharma (1980, 1981). The purpose of the present work is to 
demonstrate the applicability of the new calculus by proving the generalised Brillouin 
theorem and some related results with greater rigour than has been possible before. 

2. Formalities 

The following definitions and notations will be used throughout this work. 

Notation 2.1. The rational, the real and the complex fields will be denoted by Q, R and 
@ respectively. 

Notation 2.2. The letters X and Y will denote Banach spaces over @. 

Definition 2.1. A map f :  X + Y is said to be additive if and only if 

f ( X l +  x2) = f ( x d  +f(XZ) VXl ,  x2 E X .  

It should be noted that f is additive implies that f ( q x )  = q f ( x )  V q  E Q and f is additive 
and continuous implies that f ( r x )  = r f (x )  Vr E R. 

Definition 2.2. A map f :  X += Y is said to be linear (resp. semilinear) if and only if 
(i) f is additive and 

(ii) f ( a x )  = a f ( x )  (resp. = Gf(x) ) .  

Notation 2.3. L(X, Y )  and SL(X, Y )  will denote the Banach spaces of bounded linear 
and semilinear functions respectively from X to Y. When Y = @, the abbreviations 
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L ( X )  and SL(X)  will be used for L(X, C) and SL(X, @) respectively. It should be noted 
that if V is a real normed linear space and f is any additive continuous function from V 
to another real normed linear space W, then f is bounded and linear. 

Definition 2.3. A map T :  X + Y is said to belong to L(X,  Y)OSL(X ,  Y )  if and only if T 
can be written as 

T = L ~ + S ~  

with LT E L(X,  Y )  and ’T E SL(X, Y ) .  It should be observed that T E L ( X ,  Y ) O  
SL(X, Y )  implies that T is additive and bounded. 

Notation 2.4. The notation A ( X ,  Y )  will be used to denote the Banach space of 
continuous additive functions from X to Y. It is easily verified that 

(i) T E A ( X ,  Y )  e T is additive and bounded and 
(ii) T E A ( X ,  Y )  3 T(0)  = 0. 

(It should be noted that for the second property continuity is not necessary and 
additivity is enough.) 

Definition 2.4. A function f from a Banach space X to a Banach space Y is said to be 
semidifferentiable at a point x E X,  if there exists a function f ! )  E L(X,  Y )OSL(X ,  Y )  
such that 

The function f : ) ,  if it exists, is called the semiderivative of f at x. If the function f is 
semidifferentiable at each point in X ,  it is said to be semidifferentiable in X ,  and the rule 
which assigns to each point x E X  the semiderivative of f at that point is called the 
semiderivative of f in X and is denoted by f‘”. 

Definition 2.5. Let T be a continuously semidifferentiable function from an open set D 
in a Banach space X into a Banach space Y, that is, T(‘) is defined on the whole of D and 
is continuous. Let xo E D be such that T:: is surjective; then the point xo is said to be a 
regular point of the function T. 

Notation 2.5. Further, H will denote a Hilbert space over the complex field, A will 
denote a self-ndjoint endomorphism on H whose spectrum Sp A is of type H (cf Sharma 
and SriRankanathan 1975), which for an endomorphism merely implies that the lower 
part of the spectrum is purely discrete and the first N points of the spectrum ordered to 
form an increasing enumeration have all finite multiplicities (here N is either a positive 
integer or the cardinality No of the set of positive integers). For a subset S of a vector 
space, s* is used to denote S\(O}. 

Further, we use the following propositions which are proved in Pian and Sharma 
(198 1). 

Proposition 2.1. A ( X ,  Y f  = L ( X ,  Y)OSE(X,  Y ) .  

Proposition 2.2. (The generalised Lagrange multiplier theorem). Let X be a complex 
Banach space. Let U be an open set containing xo E X .  Let f be a real functional on X 
continuously semidifferentiable on U and let H be a mapping from X to another 
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complex Banach space Y with the properties that f ( x )  restricted to the set (x : H ( x )  = 0) 
has an extremum at xo and that H is continuously semidifferentiable on U. Then there 
exists an element A E A (  Y, C) such that the functional 

3 .  Definitions of stationary points of a functional 

Definition 3.1. Let F be a real semidifferentiable functional on a complex Banach space 
X .  A point (I, E X  is said to be a stationary point of F if F:) = 0. 

The semiderivative, if it exists, at a point (I, E X  has the following property: 

V 4 E X .  

In view of this property and the assumed semidifferentiability of F, it is easy to see that 
definition 3.1 is completely equivalent to the following. 

Definition 3.2. Let F be a real semidifferentiable functional on a complex Banach space 
X.  A point (I, E X  is said to be a stationary point of F if whenever A : ]a ,  b [  + X is a 
differentiable curve passing through (I, (that is, A (c) = +, for some c E ]a ,  b [ ) ,  then at t = c 

d(FoA)/dt = 0. 

Taking the hint from the generalised Lagrange multiplier theorem (Pian and 
Sharma 1981), we now define the stationary point of a functional constrained to the null 
set of a function G from X to another Banach space Y. 

Definition 3.3. Let F be a real semidifferentiable functional on a complex Banach space 
X .  Let G be a continuously semidifferentiable map from X to another complex Banach 
space Y. Let S = G-'({O}). A point (I, E S is said to be a stationary point of the restriction 
of F to S,  which we denote by Fls, if there exists a bounded additive functional A on Y 
such that 

F',"' = A  o G$). 

Note that we have shown elsewhere (Pian and Sharma 1981) that A ( X ,  Y )  (the space of 
additive maps from X to Y )  is a direct sum of L ( X ,  Y )  (the space of bounded linear 
maps from X to Y )  and SL(X, Y )  (the space of bounded semilinear maps from X to Y ) .  

Finally, by recasting the definition of Sharma and SriRankanathan (1980), we 
obtain yet another definition of a stationary point of a functional. 

Definition 3.4. Let F be a semidifferentiable functional on a complex Banach space X 
and let S be an arcwise connected subset of X .  A point (I, E S is said to be a stationary 
point of Fls if whenever A : ] -a ,  a [ +  S is a differentiable curve passing through 
(I, = A ( c ) ,  

F$) (4) = 0 

where (i i s  the tangent vector (dA/dtl,=,) of the curve A at (I,. 
We now prove that if S in definition 3.4 is the same as the S in definition 3.3, then a 

stationary point in the sense of definition 3.3 is so also in the sense of definition 3.4. 
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Proposition 3.1. Let S of definition 3.4 satisfy S = G-*({O}) where G is a continuously 
semidifferentiable map from X to another Banach space Y. Then 4 is a stationary point 
of Fls in the sense of definition 3.3 only if it is stationary in the sense of definition 3.4. 

Proof. Let 4 be a stationary point of FIs in the sense of definition 3.3. Let A be a 
differentiable curve lying in S.  Now there exists a 

y E L ( Y , C ) O S L ( Y , C )  

such that 
F',") = y o  G',"'. 

Let 

$ = dA/dtl,,,. 

We show that 

G',"'(J) = 0 ,  

implying 

F:) ($) = 0. 

Indeed, since 

WrL) = 0 

we have 

A (C + t ) - A ( c )  
= lim (t) G(4 + E ) (  lim 

= lim lim (') G( + + 
E'O t + O  t 

(c  + t )  - 41 
S'O r+o t 

From the uniqueness theorem for semiderivatives (Sharma and Rebelo 1975), we know 
that the double limit is unique; hence we can choose 

t = E  

to obtain 

But for sufficiently small E, A (c + E )  E S.  Hence 

G[A (c + E ) ]  = 0, 

implying 

G$'($) = 0. 

The proof of our proposition is now complete. 
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A reference to the theory of Lagrange multipliers (Pian and Sharma 1981) will show 
that the definition of a stationary point in definition 3.3 corresponds to an extremum of 
F, while the stationary point in all other definitions can correspond to either an 
extremum or a saddle point or a point of inflection. This is why the converse of our 
proposition is not true. 

4. The generalised Brillouin theorem 

We use definition 3.4 in stating and proving the generalised Brillouin theorem. 

Proposition 4.1. (The generalised Brillouin theorem). Let S be an arcwise connected 
subset of H. Let F be the Ritz-Rayleigh quotient on fi defined by 

F(x)  = ( x ,  A x ) l ( x ,  x ) .  

Let + be a stationary point of the restriction of F to S.  Let 4 E 9 be such that 

(9 (*? 4 ) = %  
(ii) Span(4, +} c S.  

Then 

(*, A 4 )  = 0. 

(Note that according to notation 2.5 A denotes an endomorphism, that is, A is 
bounded.) 

Proof. An easy computation shows that 

(" h) ) .  (4.1) FIL  ( S )  ( h )  =-((h, 1 A$ --*) (*,A*) +(A$----  
(*, *) (*, Q) (*, *) 

Let A I  :]-a, a[,+$ a > 1, be defined by 

A l ( t ) = t $ + + ( I - t ) 4 .  

Then 

A i ( 1 )  = CL 
and 

A\(t)=cL-4 V t  €]-U, a[. 

Since CC, is a stationary point, we must have 

F',"' (/,!/ - 4) = 0. 

Remembering that 

( $ 9  4)  = 0, 

it follows from equation (4.1) that 

(4,  A*) + ( 4 3 4 )  = 0. (4.2) 
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Now let A z : ] - a ,  a [ + S ,  a > 1, be defined by 

A 2 ( t ) =  t++i(l-t)4. 

Then 

A z ( 1 )  = 4 
and 

Ab(t)=+-i+ V t  E ] - a ,  a [ .  

Since $ is a stationary point, we must also have 

F',"' (+ - i4 )  = o 

(4 ,  A*) - (AIL, 4 )  = 0.  

which with the help of equation (4.1) implies that 

From equations (4.2) and (4.3) we can now conclude that 

(4, A+)  = ( A + , 4 )  = (4, Ad) = (-44, +) = 0. 

This completes our proof. 

(4.3) 

We now have an easy corollary which shows that the Hylleraas-Undheim theorem 
(Hylleraas and Undheim 1930, Sharma and SriRankanathan 1975, 1981) is related to 
the Brillouin theorem. 

Corollary 4.1. Let S in proposition 4.1 be a subspace of H. Then each stationary point 
of the Ritz-Rayleigh quotient in ŝ  is an eigenvector of PAP, where P is the orthogonal 
projection on S .  

Proof. Since S is a subspace, for every 4 E S,  (t+ + (1 - t)4) E S,  V t  E R. Hence, for every 
4 E S, there is a curve A +  lying entirely in S and passing through + whose tangent at each 
point is + - 4. Since $ is a stationary point, we must have 

F$'(* - 4 )  = 0 V 4  E s 

.$ 

+ P A P $ = k *  

A+ = k+ + ti with U E S -  and k = (4, A+)/(*,  4 )  

because + E S and therefore P$ = + and U E SL and therefore 

Pti = 0. 

The proof of our corollary is complete 

As a consequence of proposition 3.1, stationary points corresponding to extrema as 
given by definition 3.3 necessarily satisfy the Brillouin theorem. However, it is 
instructive to examine what kind of function G (cf definition 3.3) can be in a real 
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problem. There is no requirement for G to be linear or even additive. The range of G is 
another Banach space over C;  the simplest such space is C itself, and in that case G 
becomes a functional. In view of proposition 3.1, the real point of our next proposition 
is that the null set of functionals (which are not necessarily linear or additive) can be 
used to constrain the optimisation to the orthogonal complement of only a one- 
dimensional subspace. The proof also indicates how both proposition 4.1 and corollary 
4.1 can be proved directly from definition 3.3. 

Proposition 4.2. Let F be the Ritz-Rayleigh quotient on H\{O} defined by 

F ( x )  = (x, A x ) l ( x ,  x). 
Let S be the null set of a qemidifferentiable functional G such that G is regular at the 
stationary point $ of Fls. Then 

(i) [Ker(F$')]' is one-dimensional and 
(ii) 4 is an eigenvector of PAP where P is the orthogonal projection on 

(Ker F;))" 3 Ker F$'. 

Proof. It follows from the Lagrange multiplier theorem (see Pian and Sharma 1981) 
that there exists a bounded functional A on C such that 

F',"' = A o G$). 

We know from the Riesz representation theorem that there exist vectors gl and g2 in H 
such that 

G $ ' ( h ) = ( h ,  gi)+(gzr h ) .  

Since A EL(C,  @)OSL(C,  C), we can write A as 

A = A ' + A '  

where A and A are functions from C to C defined by 

A ' ( c ) = h l c  

and 
A2(c) = A 2 E  

where A I  and A Z  are complex constants. We therefore have 

Since this is true for all h we must have 

Therefore either gl and g2 are linearly dependent or 

A l = h 2 .  

In either case (Ker F$')' is clearly one-dimensional, which proves (i). 
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Let g be a basis for (Ker F;)) ' ,  Now 

= O  

3 I) E Ker F$)  c [Ker F$)IL'. 

Let 4 E [Ker F$']"; then 4 is perpendicular to g. Hence 

G$'(4) = 0 

3 F$'(C$)=O. 

Now let 4 E [Ker F$)ILL be such that 

then 

Since this is true for each such 4, we must have ArC, E Span{$}O[Ker F$']'. In other 
words 

Ai+b = a$ + bg. 

Hence 

PAP$ = P A 4  = a$, 

which proves (ii), completing the proof of our proposition. 

We remark that both proposition 4.1 and corollary 4.1 can be proved directly from 
definition 3.3 by arguments similar to the one used in the preceding proof. 

When S is a subspace of H, as in the situation relevant to the Hylleraas-Undheim 
problem, then the constraining function G can be taken to be ( I  - P )  where I is the 
identity on H and t. IS the orthogonal projection on the subspace S.  The Banach space 
Y (the range of G) in this case is simply SI. It is easy to verify that at the stationary 
points of F, G is regular. The most common use of the Brillouin theorem is related to 
the Hartree-Fock problem and there S is not a subspace. However, we do not need a 
constraining function for the Brillouin theorem, which we have already proved. The 
work of one of us (J Pian, unpublished) shows how one can use the Lagrange multiplier 
theorem for deducing the Hartree-Fock equations by using our calculus. 

The main advantage of using the new calculus in preference to more conventional 
methods in deducing the Hartree-Fock equations, the Brillouin theorem and other 
variational results involving a complex Banach space lies in the fact that our method 
makes it unnecessary to use the very fruitful but mathematically meaningless rule which 
allows one to vary a function and its complex conjugate (or a state vector in a Hilbert 
space and its dual (through the Riesz representation theorem)) independently of each 
other. 
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5. Concluding remarks 

We have assumed that A is bounded, whereas the Hamiltonians of quantum mechanics 
are not. All the principal results extend to semibounded operators by using the 
technique described in Pian and Sharma (1980) or by using a concept which we call 
weak semidifferentiability. The work on developing the theory of weak semidifferen- 
tiability is in progress and will be reported in due course. We shall illustrate the 
application of weak semidiff erentiability by showing how it extends the present results 
to unbounded operators. 

Though it is possible to extend the results of this paper rigorously to unbounded 
operators by using either of the techniques mentioned in the preceding paragraph, for 
practical applications it is, in most cases, enough to have these results for bounded 
operators. There are two ways of seeing that there is no loss of rigour in treating A as 
bounded in applications. All the physical results mentioned in this work-the Ritz- 
Rayleigh principle, the Hylleraas-Undheim theorem and the Brillouin theorem-are 
used for finding variational approximations to the energies and eigenfunctions of the 
ground states and low-lying excited states of atoms and molecules. How good an 
approximation one gets depends on the wisdom in making the choice of the space of 
trial functions. It stands to reason that any vector having a significant component in a 
subspace of H which corresponds to very high energies of the system cannot be of much 
use in approximating a low-lying stationary state. Hence, for any reasonable choice of 
the space of trial functions, A can be approximated to any desired degree of accuracy by 
A’,  which is the operator obtained by truncating the spectral integral for A at an 
appropriate energy depending on the trial space and how good an approximation one 
wants. It is common knowledge that in atomic calculations, atomic integrals to infinity 
are truncated, without loss of desired accuracy, at finite values. Similarly, on the 
rangefinder of a photographic camera infinity is almost always very finite. Truncating 
the spectral representation of A at a finite energy is very similar and gives a bounded 
approximation to A.  The proof of the assertion that the approximation can be made to 
any desired degree of accuracy for a finite-dimensional trial space is much more trivial 
than anything in this paper and is therefore omitted. Furthermore, there is another way 
of seeing that the result for bounded operators is enough. In these variational 
calculations one is restricted to a finite-dimensional subspace, say M, spanned by the 
trial wavefunctions (with giant computers now available, the dimension of this subspace 
can be very large, say tens of thousands, but it is nevertheless finite). One is using the 
trial space to find approximations to a finite number of bound states. Let E be the 
subspace spanned by the eigenfunctions of these bound states. Let 

N=FE 
where the bar over M + E denotes that we are taking the closure of this sum. Let P be 
the orthogonal projection on N. We are not concerned with the values of the 
Ritz-Rayleigh quotient outside N, and inside N the Ritz-Rayleigh quotient of A is the 
same as that of PAP, and PAP can be effectively regarded as an operator on the 
finite-dimensional space N and an operator on a finite-dimensional subspace is 
necessarily bounded. Hence it is enough for our purposes to have the theorems for 
bounded operators only. This indeed explains why atomic and molecular physicists can 
disregard the lack of boundedness of A with impunity. The two explanations are in fact 
complementary. The method of truncation of the spectral integral, combined with the 
results of this paper, will yield a rigorous proof of the Ritz-Rayleigh principle for the 
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ground state. Further, the method of replacing A by PAP, combined with our results, 
will give us rigorous proofs of the orthogonality which is achieved between approximate 
eigenfunctions of two states by using the Hylleraas-Undheim theorem and of the 
vanishing of certain matrix elements of A through the application of the Brillouin 
theorem in calculations involving the method of configuration interaction. Neverthe- 
less, it is important to have the results for unbounded operators. This is because when 
one deduces something like the Hartree-Fock equations for atoms, one is doing a 
theoretical variation in an infinite-dimensional trial space, and neither of the methods 
described in this paragraph will justify the use of bounded operators for such cal- 
culations. 
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